الدالة التربيعية هي دالة حدودية من الدرجة الثانية ، ومجالها هو مجموعة الأعداد الحقيقية ح ومداها مجموعة جزئية من مجموعة
الأعداد الحقيقية ح ويتوقف على معاملات الحدود في قاعدة الاقتران :
السينات أو في اتجاه محور الصادات
الدالة التربيعية ( دالة الدرجة الثانية ) .
قاعدتها د(س ) = أس2 + ب س + جـ ,
ح 0 , س ح , أ أ , ب, جـ
المجال حح المدى
تمثل بيانيا : قطع مكافئ محور // ص
رأسه ( - ب/2أ , د ( - ب/2أ )) و نحدد الفتحة و فق أ حيث
[ المدى = [ د ( -ب/2أ ,
2- أ < فتحة القطع نحو ص-0
, د ( -ب/2أ ) ]المدى = ] -
نحدد إشارة الدالة باستخدام المميز :
إشارة الدالة نفس إشارة معامل س 0 2- ب2 – 4 أجـ دائما ما عدا جذر الدالة فإن د ( س ) = 0
مثال :
تمرين 7صـــ172 :
أ- د ( س ) = س2- س – 6
الحل :
الدالة تربيعية مجالها ح , تمثل قطع مكافئ لتحديد الإشارة من ق :
ب – 4أجـ = 1- 4 * 1 * 1 – 6 = 25 > 0
س2-س -6 = 0 بوضع د ( س ) = 0
س = 3 , س= -2 , أ = 1 > 0
f ( x ) = a x2 + b x + c حيث 1- أ > فتحة القطع نحو0 ص+ 1- ب2 – 4أجـ > إشارة د (0 س ) نفس إشارة أ ما عدا بين جذري الدالة فتكون إشارتها عكس إشارة أ ( معامل س2 )
على خط الأعداد :
حيث الدالة عكس إشارة أ ( معامل س2 ) بين جذري الدالة و نفس إشارة أ خارج الجذرين .
, -2 ] [ ب ] - [ 3 , س 0 د ( س )
د ( س ) < ] – 2 , 3 [ س 0
تطبيق :
م = ب2 – 4أجـ = 16- 4 * 1 * 4 = 0
أ = 1 > الدالة لها نفس إشارة أ على0
ح - }صفر الدالة {س
نضع د (س ) = 0 س2 – 4س + 4 = 0
س = 2( س – 2 ) ( س – 2 ) = 0
د ( س ) > ح - } 2 { س 0
2- د ( س ) = س2 + س + 1
م = ب2- 4أجـ = 1 – 4 * 1 * 1 = - 3 < د ( س ) ليس للدالة جذور في ح 0 > 0 ( نفس إشارة أ )
ح حيث أ = 1 س > 0
تمرين 7صــ172
ب) ( 5- س ) ( س – 1 ) = د ( س )
ب2-4أجـللدالة جذران في ح >0 بوضع
س = 1 , س = 5( س – 1 ) ( -س + 5 ) = 0
إشارة أ = - 1 < 0
1- د ( س) = -4 س + س2 + 4
د( س ) > ] 1 , 5 [ س 0
د ( س ) < , 1 [ ] - [ ] 5 , س 0
عندما س = 1 , س = 5د ( س ) = 0
ليست هناك تعليقات:
إرسال تعليق